M.S. AAI Capstone Chronicles 2024
References Fleischmann, C., Scherag, A., Adhikari, N. K., et al. (2016). Assessment of Global Incidence and Mortality of Hospital-treated Sepsis . American Journal of Respiratory and Critical Care Medicine, 193(3), 259-272.
Johnson, A. E., Pollard, T. J., Mark, R. G., et al. (2020). MIMIC-IV (Version 1.0) . PhysioNet. https://doi.org/10.13026/a3wn-hq05
Reyna, M. A., Josef, C., Jeter, R., Shashikumar, S. P., Westover, M. B., Nemati, S., Clifford, G. D. (2019). Early Prediction of Sepsis from Clinical Data: The PhysioNet/Computing in Cardiology Challenge 2019 . Critical Care Medicine, 47(11), 1794–1802.
Singer, M., Deutschman, C. S., Seymour, C. W., et al. (2016). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) . JAMA, 315(8), 801-810.
Boussina, A., Shashikumar, S. P., Malhotra, A., Owens, R. L., El-Kareh, R., Longhurst, C. A., Quintero, K., Donahue, A., Chan, T. C., Nemati, S., & Wardi, G. (2024). Impact of a deep learning sepsis prediction model on quality of care and survival. Npj Digital Medicine , 7 (1). https://doi.org/10.1038/s41746-023-00986-6
Sendak, M. P., Ratliff, W., Sarro, D., Alderton, E., Futoma, J., Gao, M., … Balu, S. (2020). Real-world integration of a sepsis deep learning technology into routine clinical care: Implementation study. JMIR Medical Informatics, 8(7), e15182. https://doi.org/10.2196/15182
282
Made with FlippingBook - professional solution for displaying marketing and sales documents online