M.S. AAI Capstone Chronicles 2024
CNN Lung Disease Classification
22
Bogatinovski, J., Todorovski, L., Džeroski, S., & Kocev, D. (2021). Comprehensive comparative study of multi-label classification methods . IEEE. Ruder, S. (2017). An overview of multi-task learning in deep neural networks . arXiv https://doi.org/10.48550/arXiv.1706.05098 Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning . Journal of Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0 Zhang, Y., Yang, Q., & Zhang, Z. (2020). An overview of multi-task learning in deep neural networks . arXiv https://doi.org/10.48550/arXiv.1706.05098 Salehi, A. W., Khan, S., Gupta, G., Alabduallah, B. I., Almjally, A., Alsolai, H., Siddiqui, T., & Mellit, A. (2023). A study of CNN and transfer learning in medical imaging: Advantages, challenges, future scope. Sustainability , 15 (7), 5930. https://doi.org/10.3390/su15075930 Hou, G., Qin, J., Xiang, X., Tan, Y., & Xiong, N. N. (2021). AF-Net: A medical image segmentation network based on attention mechanism and feature fusion . Computers, Materials & Continua, 69(2), 1878-1891. https://doi.org/10.32604/cmc.2021.017481 Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks . Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386 White, C., Safari, M., Sukthanker, R., Ru, B., Elsken, T., Zela, A., Dey, D., & Hutter, F. (2023). Neural architecture search: Insights from 1000 papers . arXiv:2301.08727 [cs.LG] . https://doi.org/10.48550/arXiv.2301.08727 Dahmane, O., Khelifi, M., Beladgham, M., & Kadri, I. (2021). Pneumonia detection based on transfer learning and a combination of VGG19 and a CNN built from scratch . Indonesian Journal of Electrical Engineering and Computer Science, 24(3), 1469-1480. https://doi.org/10.11591/ijeecs.v24.i3.pp1469-1480 Folio3AI. (n.d.). Explaining precision and recall in machine learning . Folio3AI. https://www.folio3.ai/blog/precision-and-recall-in-machine-learning/
180
Made with FlippingBook - professional solution for displaying marketing and sales documents online