ADS Capstone Chronicles Revised

‭22‬

‭Table 5.2‬ ‭Performance Summary for CatBoost Optimal‬ ‭Model‬ ‭Dataset‬ ‭Adj. R2‬ ‭RMSE‬ ‭MAE‬ ‭MAPE‬ ‭(%)‬ ‭Training‬ ‭0.898‬ ‭0.045‬ ‭0.017‬ ‭0.013‬ ‭Validation‬ ‭0.867‬ ‭0.051‬ ‭0.019‬ ‭0.015‬ ‭Test‬ ‭0.876‬ ‭0.049‬ ‭0.018‬ ‭0.014‬ ‭Table 5.3‬ ‭Performance Summary for MLP Baseline Model‬ ‭Dataset‬ ‭Adj.‬ ‭R2‬ ‭RMSE‬ ‭MAE‬ ‭MAPE‬ ‭(%)‬ ‭Training‬ ‭-14.13‬ ‭1.75‬ ‭0.861‬ ‭0.860‬ ‭Validation‬ ‭-4.81‬ ‭1.08‬ ‭0.842‬ ‭0.842‬ ‭Test‬ ‭-13.23‬ ‭1.69‬ ‭0.859‬ ‭0.859‬ ‭Table 5.4‬ ‭Performance Summary for MLP Optimal Model‬ ‭Dataset‬ ‭Adj.‬ ‭R2‬ ‭RMSE‬ ‭MAE‬ ‭MAPE‬ ‭(%)‬ ‭Training‬ ‭0.911‬ ‭0.042‬ ‭0.015‬ ‭0.011‬ ‭Validation‬ ‭0.884‬ ‭0.048‬ ‭0.016‬ ‭0.012‬ ‭Test‬ ‭0.891‬ ‭0.046‬ ‭0.016‬ ‭0.012‬

‭The‬ ‭Multi-Layer‬ ‭Perceptron‬ ‭(MLP)‬ ‭model‬ ‭demonstrated‬ ‭superior‬ ‭performance‬ ‭compared‬ ‭to‬ ‭the‬ ‭CatBoost‬ ‭model‬ ‭across‬ ‭all‬ ‭datasets,‬ ‭as‬ ‭evidenced‬ ‭by‬ ‭its‬ ‭higher‬ ‭Adjusted‬ ‭R²‬ ‭values‬ ‭and‬ ‭lower‬ ‭error‬ ‭metrics‬ ‭(RMSE,‬ ‭MAE,‬ ‭and‬ ‭MAPE).‬ ‭These‬ ‭results‬ ‭highlight‬ ‭the‬ ‭MLP‬ ‭model’s‬ ‭ability‬ ‭to‬ ‭effectively‬ ‭learn‬ ‭complex,‬ ‭non-linear‬ ‭relationships‬ ‭in‬ ‭the‬ ‭data.‬ ‭Its‬ ‭neural‬ ‭network‬ ‭architecture,‬ ‭with‬ ‭optimized‬ ‭hyperparameters,‬ ‭enabled‬‭it‬‭to‬‭capture‬‭intricate‬‭feature‬‭interactions,‬ ‭leading‬ ‭to‬ ‭better‬ ‭predictive‬ ‭accuracy‬ ‭and‬ ‭generalization.‬ ‭Although‬ ‭the‬ ‭CatBoost‬ ‭model‬ ‭performed‬ ‭well,‬ ‭especially‬ ‭in‬ ‭capturing‬ ‭patterns‬ ‭in‬ ‭tabular‬ ‭data,‬ ‭it‬ ‭fell‬ ‭short‬ ‭of‬ ‭the‬ ‭MLP‬‭model’s‬ ‭performance,‬ ‭particularly‬ ‭in‬ ‭terms‬ ‭of‬ ‭error‬ ‭reduction.‬ ‭The‬ ‭MLP‬ ‭model’s‬ ‭robustness‬ ‭across‬ ‭training,‬ ‭validation,‬ ‭and‬ ‭test‬‭datasets—combined‬ ‭with‬ ‭its‬ ‭lower‬ ‭MAPE‬ ‭values—underscores‬ ‭its‬ ‭suitability‬‭for‬‭this‬‭task,‬‭where‬‭precise‬‭predictions‬ ‭of‬ ‭accident‬ ‭severity‬ ‭are‬ ‭crucial.‬ ‭The‬ ‭MLP‬ ‭model’s‬ ‭effectiveness‬ ‭in‬ ‭modeling‬ ‭the‬ ‭dataset‬ ‭is‬ ‭reflected‬ ‭in‬ ‭Equation‬ ‭1,‬ ‭which‬ ‭represents‬ ‭its‬ ‭capability to generalize complex relationships:‬ ‭ ‬ (‭3‬) • ‭ ‬ ‭ ‬ (‭2‬) + ‭ ‬ (‭3)‬ . ‭It‬ ‭is‬ ‭also‬ ‭important‬ ‭to‬ ‭note‬ ‭that‬ ‭both‬ ‭models‬ ‭identified‬‭similar‬‭influential‬‭features—‬‭confirmed‬ ‭by‬ ‭a‬ ‭feature‬ ‭importance‬ ‭analysis.‬ ‭With‬ ‭little‬ ‭surprise,‬ ‭weather‬ ‭conditions‬ ‭(e.g.,‬ ‭wind‬ ‭speed,‬ ‭precipitation)‬ ‭and‬ ‭traffic‬ ‭patterns‬ ‭(e.g.,‬ ‭speed‬ ‭ranges)‬ ‭emerged‬ ‭as‬ ‭the‬ ‭top‬ ‭predictors.‬ ‭This,‬ ‭in‬ ‭turn,‬ ‭confirms‬ ‭the‬ ‭original‬ ‭hypothesis‬ ‭that‬ ‭these‬ ‭factors‬ ‭significantly‬ ‭influence‬ ‭the‬ ‭severity‬ ‭of‬ ‭automobile‬ ‭accidents.‬ ‭Below‬ ‭are‬ ‭the‬ ‭top‬ ‭10‬ ‭features‬ ‭identified‬ ‭as‬ ‭most‬ ‭important‬ ‭in‬ ‭the‬ ‭modeling process by the optimal model.‬ ‭(1)‬ ‭ ‬‭​‬ = ‭‬ ‭ ‬=‭1‬ ‭32‬ ∑ ‭ ‬

262

Made with FlippingBook - Online Brochure Maker