ADS Capstone Chronicles Revised

‭7‬

‭Initial‬‭values‬‭of‬‭W‬‭and‬‭H‬‭were‬‭nonnegative.‬ ‭Then,‬ ‭frequency‬ ‭classes‬ ‭were‬ ‭derived‬ ‭from‬ ‭using‬ ‭a‬ ‭threshold‬ ‭density‬ ‭function‬ ‭for‬ ‭ ‬ ‭each‬ ‭class.‬ ‭Predictions‬ ‭between‬ ‭each‬ ‭class‬ ‭were‬ ‭statistically‬ ‭significant.‬ ‭The‬ ‭mean‬ ‭accuracy‬ ‭for‬ ‭each‬ ‭class‬ ‭ranged‬ ‭between‬ ‭67.8%‬ ‭to‬ ‭94%‬ ‭when‬ ‭the‬ ‭contiguous‬ ‭upper‬ ‭and‬ ‭lower‬ ‭classes‬ ‭were‬ ‭considered.‬ ‭The‬ ‭model‬ ‭performs‬ ‭best‬ ‭with‬ ‭very‬ ‭more‬ ‭frequent‬ ‭side‬ ‭effects,‬ ‭and‬ ‭poorer‬ ‭with‬ ‭the‬ ‭very‬ ‭rare‬ ‭class.‬ ‭They‬ ‭also‬ ‭evaluated‬ ‭the‬ ‭model‬ ‭against‬ ‭test‬ ‭sets,‬ ‭that‬ ‭contained‬ ‭drug‬ ‭side‬ ‭effect‬ ‭data‬ ‭from‬ ‭post-marketing;‬ ‭these‬ ‭data‬ ‭sources‬ ‭were‬ ‭the‬ ‭post-market‬ ‭SIDER‬ ‭dataset‬ ‭(Kuhn‬ ‭et‬ ‭al.,‬ ‭2018),‬ ‭and‬ ‭a‬ ‭post-market‬ ‭off‬ ‭label‬ ‭drug‬ ‭side‬ ‭effects‬ ‭(OFFSIDES)‬ ‭database‬ ‭which‬ ‭contains‬ ‭drug‬ ‭side-effects‬ ‭that‬ ‭are‬ ‭found‬ ‭mainly‬ ‭through‬ ‭EHR‬ ‭records‬ ‭but‬ ‭not‬ ‭listed‬ ‭on‬ ‭FDA‬ ‭labels‬ ‭(Tatonetti,‬ ‭2012).‬ ‭Both‬ ‭these‬ ‭test‬ ‭sets‬ ‭only‬ ‭contained‬ ‭data‬ ‭regarding‬ ‭presence‬ ‭or‬ ‭absence‬ ‭of‬ ‭a‬ ‭side‬ ‭effect,‬ ‭not‬ ‭the‬ ‭frequency.‬ ‭Statistical‬ ‭analysis‬ ‭showed‬ ‭that‬ ‭predicted‬ ‭scores‬ ‭SIDER‬ ‭aligned‬ ‭with‬ ‭predictions‬ ‭in‬ ‭the‬ ‭held-out‬ ‭test‬ ‭set,‬ ‭while‬ ‭predictions‬ ‭for‬ ‭OFFSIDES‬‭were‬‭lower.‬‭They‬‭then‬‭examined‬ ‭the‬‭effect‬‭of‬‭signature‬‭drug‬‭components‬‭and‬ ‭side‬ ‭effects‬ ‭by‬ ‭bucketing‬ ‭drugs‬ ‭into‬ ‭anatomical‬ ‭classes,‬ ‭and‬ ‭summarized‬ ‭the‬ ‭statistically‬ ‭significant‬ ‭associations‬ ‭and‬ ‭anatomical‬ ‭drug‬ ‭categories,‬ ‭with‬ ‭MedDRA‬ ‭side effect categories.‬ ‭3.6 Deep Learning Network‬ ‭Zhao‬ ‭et‬ ‭al.‬ ‭(2023)‬ ‭developed‬ ‭a‬ ‭two-step,‬ ‭multi-task‬ ‭deep‬‭learning‬‭network‬‭to‬‭classify‬ ‭outcomes‬ ‭of‬ ‭adverse‬ ‭events‬ ‭based‬ ‭on‬ ‭seriousness‬ ‭of‬ ‭adverse‬ ‭drug‬ ‭reactions‬ ‭(ADRs)‬ ‭reported‬ ‭in‬ ‭FAERS.‬ ‭Step‬ ‭one‬ ‭is‬ ‭to‬ ‭classify‬ ‭whether‬ ‭an‬ ‭adverse‬ ‭reaction‬ ‭is‬ ‭related‬‭to‬‭a‬‭serious‬‭clinical‬‭outcome‬‭(yes/no)‬ ‭and‬ ‭step‬ ‭two‬ ‭is‬ ‭to‬ ‭classify‬ ‭the‬ ‭severity‬ ‭of‬ ‭outcome‬ ‭out‬ ‭of‬ ‭seven‬ ‭options‬ ‭-‬ ‭death,‬ ‭life-threatening,‬ ‭hospitalization,‬ ‭disability,‬ ‭congenital‬ ‭anomaly,‬ ‭required‬ ‭intervention,‬ ‭and‬ ‭other.‬ ‭Input‬ ‭features‬ ‭of‬ ‭the‬ ‭custom‬

‭benchmark‬ ‭dataset‬ ‭include‬ ‭one-hot‬‭encoded‬ ‭drug‬ ‭structure‬ ‭sequences‬ ‭(SMILES;‬ ‭Weininger,‬ ‭1988),‬ ‭semantic‬ ‭features‬ ‭of‬ ‭ADRs‬ ‭listed‬ ‭in‬ ‭PubChem‬ ‭(NCBI,‬ ‭n.d.)‬ ‭and‬ ‭ADReCS‬ ‭(Cai‬ ‭et‬ ‭al.,‬ ‭2015),‬ ‭and‬ ‭141,752‬ ‭“known‬ ‭drug-ADR‬ ‭interactions”‬ ‭of‬ ‭which‬ ‭58,429‬ ‭“result‬ ‭in‬ ‭serious‬‭clinical‬‭outcomes”‬ ‭(Zhao‬ ‭et‬ ‭al.,‬ ‭2023,‬ ‭p.‬ ‭2)‬ ‭from‬ ‭FAERS.‬ ‭The‬ ‭data‬ ‭was‬ ‭represented‬ ‭as‬ ‭two‬ ‭n‬ ‭x‬ ‭m‬ ‭binary‬ ‭matrices:‬ ‭Interaction‬ ‭x.‬ ‭Seriousness‬ ‭Level,‬ ‭Interaction‬ ‭x.‬ ‭Serious‬ ‭(Yes,‬ ‭No).‬ ‭The‬ ‭network‬ ‭was‬ ‭trained‬ ‭with‬ ‭10‬ ‭times‬ ‭10-fold‬ ‭cross‬ ‭validation‬ ‭on‬ ‭the‬ ‭custom‬ ‭benchmark‬ ‭dataset,‬ ‭and‬ ‭performance‬ ‭(AUC,‬ ‭AUPR)‬ ‭was‬‭evaluated‬‭on‬‭the‬‭test‬‭folds‬‭in‬‭addition‬‭to‬ ‭independent‬ ‭test‬ ‭sets‬ ‭-‬ ‭SIDER‬ ‭(Kuhn‬‭et‬‭al.,‬ ‭2016)‬ ‭and‬ ‭OFFSIDES‬ ‭(Tatonetti‬ ‭et‬ ‭al.,‬ ‭2012)‬‭-‬‭in‬‭which‬‭overlapping‬‭drugs‬‭with‬‭the‬ ‭benchmark‬ ‭training‬ ‭set‬ ‭were‬ ‭removed.‬ ‭For‬ ‭binary‬ ‭classification,‬ ‭the‬ ‭performance‬ ‭was‬ ‭above‬ ‭90%‬ ‭for‬ ‭all‬ ‭performance‬ ‭metrics‬ ‭on‬ ‭all‬ ‭testing‬ ‭data.‬‭For‬‭multiclass‬‭classification‬ ‭of‬ ‭outcome‬ ‭seriousness,‬ ‭the‬ ‭network‬ ‭performance‬ ‭declines.‬ ‭The‬ ‭class‬ ‭imbalance‬ ‭in‬‭the‬‭seven‬‭levels‬‭of‬‭seriousness‬‭is‬‭reflected‬ ‭in‬ ‭the‬ ‭AUPR‬ ‭scores‬ ‭for‬ ‭the‬ ‭test‬ ‭folds,‬ ‭with‬ ‭congenital‬ ‭anomaly‬ ‭and‬ ‭required‬ ‭intervention‬ ‭scoring‬‭the‬‭lowest‬‭at‬‭0.529‬‭and‬ ‭0.431‬ ‭respectively.‬ ‭The‬ ‭AUPR‬ ‭for‬ ‭SIDER‬ ‭and‬ ‭OFFSIDES‬ ‭was‬ ‭0.674‬ ‭and‬ ‭0.663,‬ ‭respectively.‬ ‭Performance‬ ‭was‬ ‭increased‬ ‭by‬ ‭3.6%‬ ‭for‬ ‭AUPR‬ ‭by‬ ‭constructing‬ ‭a‬ ‭directed‬ ‭acyclic‬ ‭graph‬ ‭for‬ ‭each‬ ‭ADR‬ ‭and‬ ‭using‬ ‭a‬ ‭multi-head‬ ‭self-attention‬ ‭module‬ ‭for‬ ‭the‬ ‭multiclass‬‭classification.‬‭The‬‭model‬‭training‬ ‭could‬‭have‬‭benefited‬‭from‬‭class‬‭balancing‬‭or‬ ‭choosing‬ ‭a‬ ‭different‬ ‭outcome‬ ‭variable‬ ‭with‬ ‭less levels.‬ ‭3.7 FAERS Limitations‬ ‭One‬ ‭of‬ ‭the‬ ‭primary‬ ‭limitations‬ ‭for‬ ‭FAERS‬ ‭data‬ ‭is‬ ‭that‬ ‭true‬ ‭population‬ ‭frequencies‬ ‭of‬ ‭ADRs‬ ‭cannot‬ ‭be‬ ‭inferred‬ ‭due‬ ‭to‬ ‭underreporting‬‭(Hazell‬‭&‬‭Shakir,‬‭2006).‬‭Yue‬ ‭et‬ ‭al.‬ ‭(2024)‬ ‭used‬ ‭the‬ ‭national‬ ‭Medical‬ ‭Expenditure‬ ‭Panel‬ ‭Survey’s‬ ‭(MEPS)‬

157

Made with FlippingBook - Online Brochure Maker